Processing math: 100%

Misra-Gries频数估计算法

Misra-Gries算法最早由J. Misra和D. Gries在1982年提出 [1]。Misra-Gries算法可以看成是对Majority算法的一个扩展,可以对数据流中的频数提供相对误差为ϵ的估计,使用的空间复杂度为O(1/ϵ)

Sticky Sampling频数估计算法

StickySampling是R. Motwani和G. S. Manku在2002年提出的一种基于采样的频繁项估计算法 [1]。在原始论文中,作者号称它能够对数据项的频数以超过1δ的概率提供相对误差为ϵ的估计,并返回数据流中所有频率超过给阈值的所有数据项,其所需的空间复杂度为O(log1ϵδ)但这个结论的证明可能存在问题

Morris频数估计算法

MorrisCounter算法是R. Morris于1978年提出的一种用于估计频数的算法 [1]. 当时Morris需要编写一段代码来对大量事件进行计数,但是他能使用的只有一个8位的计数器。为了能在有限的存储空间内完成任务,他发明了MorrisCounter算法,能够使用 O(loglogN+log1/ϵ+log1/δ)个比特,对频数进行估计,并且保证估计频数ˆf和真实频数f之间满足: